Introduces a four-phase maturity model from assisted intelligence to fully autonomous agentic systems Explains why most organisations today sit in Phases 2–3, Introduces a four-phase maturity model from assisted intelligence to fully autonomous agentic systems Explains why most organisations today sit in Phases 2–3,

Crawl, Walk, Run, Fly - The Four Phases of AI Agent Maturity

:::info This is the second article in a five-part series on agentic AI in the enterprise. In Part 1, we explored what agentic AI is and how it differs from generative AI, highlighting the shift from hype to pragmatic reality. Here in Part 2, we focus on how organisations progress towards autonomy through distinct maturity phases, and why taking it step by step matters.

:::

\ Deploying autonomous agents isn’t an overnight revolution. It’s a journey of increasing capability and trust. In practice, enterprise adoption of AI agents can be viewed as a maturity spectrum with four broad phases, progressing from basic assistive tools to fully autonomous systems. Think of it as crawl - walk - run - fly in terms of an organisation’s AI capability. Understanding where you are on this curve helps set realistic expectations and next steps for your AI projects. Most enterprises today are somewhere in the middle, experimenting with advanced assistants or narrow autonomous agents, rather than at the finish line of “AI doing everything.” Let’s define each phase and what it looks like in real life. (We’ll use the crawl/walk/run/fly metaphor to make it memorable).

\

\ Phase 1 - Assisted Intelligence (Crawl): At the base of the ladder are the traditional automation and analytics solutions that have been around for years. Think rule-based workflows, simple chatbots, robotic process automation (RPA) bots, or classical machine learning models that make isolated predictions. These systems can automate repetitive, well-defined tasks (for example, flagging a fraudulent transaction or generating a report from a template) and assist humans by handling grunt work. However, they have no dynamic planning or true autonomy - they execute predetermined rules or model outputs in a fixed way. Most enterprises already have this foundation in place (perhaps a basic customer service chatbot or an ML classifier sorting incoming emails). The impact is real (e.g. efficiency gains for narrow tasks) but it’s limited by the lack of adaptability or initiative. In short, Phase 1 is like having a scripted assistant that only does exactly what it’s pre-programmed to do, nothing more.

\ Phase 2 - Generative AI Assistants (Walk): The last couple of years have seen an explosion of generative AI-powered assistants that operate with far more flexibility. This is the era of tools like Microsoft’s Copilot in Office apps, Google’s Duet AI for Workspace, or custom GPT-based chatbots that can understand natural language and handle more complex requests. These assistants represent a big step up in capability - for instance, they can summarise documents, draft emails, answer free-form questions - providing a significant productivity boost across many knowledge-work tasks. However, these assistants are still mostly reactive. They work one query or command at a time and rely on the user to initiate each interaction. In other words, they’re assistive tools that enhance human work, not autonomous agents that can initiate or chain together tasks independently. Phase 2 is where many companies’ AI efforts blossomed during the generative AI boom: lots of proof-of-concepts with chatbots and helpers that can respond intelligently, but don’t truly act on their own. It’s like having a very smart colleague on call, but one who only speaks when spoken to.

\ Phase 3 - Goal-Driven AI Agents (Run): Here we reach true agentic AI. Systems in Phase 3 can be given a high-level goal and will proactively devise and execute a multi-step plan to achieve it. They incorporate capabilities like planning algorithms, tool use (e.g. calling APIs), memory of prior context, and dynamic learning from feedback. In practice, these are “digital colleagues” that can handle well-bounded objectives end-to-end. For example, an IT support agent at this level might autonomously handle a user’s request from start to finish: read the ticket, diagnose the issue (maybe by querying logs or a knowledge base), apply a fix, and then confirm resolution, escalating to a human only if it hits an unknown problem. In 2025, many enterprise pilots are hovering in this Phase 3 category: agents that can do non-trivial tasks (data analysis, marketing campaign optimisation, incident response, etc.) with minimal intervention. This is a major leap in capability - moving from one-step answers to multi-step autonomous execution - but it also brings major complexity. To work reliably, it demands a robust architecture and strong guardrails (those “Seven Pillars” we’ll discuss in Part 3). Most successful “agentic AI” stories today fall into this Phase 3 zone, often with a human-in-the-loop for oversight or final approval on important actions. In other words, the agent is running, but with a safety harness attached.

\ Phase 4 - Fully Autonomous Agentic Systems (Fly): The aspirational end-state is a system (or an ecosystem of systems) of AI agents that operate with minimal human involvement - effectively functioning as a digital workforce for certain tasks or processes. A Phase 4 scenario might be, say, an autonomous order-fulfilment agent (or a team of agents) that receives customer orders and then handles everything from inventory checks to arranging shipment and updating the customer, adapting to issues along the way, all without hand-holding. In theory, you could delegate an entire business process to AI agents. In practice, very few organisations have anything close to this in production yet. The technical, ethical, and organisational challenges are significant, and understandably, most companies aren’t ready to let an AI roam free in critical operations. Fully autonomous systems raise hard questions of control, liability, and trust that are still being figured out. For now, Phase 4 remains largely in the realm of experiments and conceptual pilots. It’s a compelling vision of the future (like “flying”) but most enterprises will get there (if ever) only after mastering the earlier phases and proving value step by step.

\ Where do companies stand today? In my experience (echoed by industry surveys), most companies right now cluster in Phases 2-3 - they’re using generative AI assistants to augment staff, and maybe running a pilot of a more autonomous agent in a specific use case. It’s common to start by deploying a GenAI assistant to help employees (Phase 2), then pilot a goal-driven agent for one high-value process (Phase 3). Each step up the maturity curve requires not just better tech, but stronger processes and cultural readiness. Not every organisation will need or want to reach Phase 4 in all areas - the aim isn’t autonomy for its own sake, but improved outcomes. In many cases, a Phase 3 agent with a human overseer delivers the best balance of efficiency and risk management. The maturity model is a guide to help you decide where to apply agentic AI next and how to chart a safe path forward.

\ Crucially, knowing your current phase helps manage expectations. For example, if your firm is still “learning to crawl” with basic RPA bots, jumping straight to a fully autonomous agent managing critical tasks would be asking for trouble. It might be wiser to introduce a generative assistant first, get comfortable with AI outputs, then gradually give the AI more autonomy in a controlled area. Conversely, if you’ve done successful Phase 2 pilots, you might be ready to experiment with a Phase 3 agent - but you’ll need to invest in the architecture and governance to support it. The message is: walk before you run (and certainly before you fly).

\ In the next part of this series, we’ll move from this conceptual roadmap to the architecture needed for success. What does it take under the hood to turn a nifty prototype agent into a production-grade solution? As it turns out, successful agentic AI systems share a common DNA. In Part 3, we’ll break down the seven key pillars of an enterprise AI agent’s architecture, from how it perceives input to how it is governed, and share design tips for each.

Market Opportunity
Fly Trade Logo
Fly Trade Price(FLY)
$0.02476
$0.02476$0.02476
+4.25%
USD
Fly Trade (FLY) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact [email protected] for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

XRP and SOL ETFs Attract Inflows Amid BTC, ETH Outflows

XRP and SOL ETFs Attract Inflows Amid BTC, ETH Outflows

Spot XRP and SOL ETFs gain inflows as BTC and ETH face outflows, signaling a market shift.
Share
CoinLive2025/12/26 05:14
SEC Backs Nasdaq, CBOE, NYSE Push to Simplify Crypto ETF Rules

SEC Backs Nasdaq, CBOE, NYSE Push to Simplify Crypto ETF Rules

The US SEC on Wednesday approved new listing rules for major exchanges, paving the way for a surge of crypto spot exchange-traded funds. On Wednesday, the regulator voted to let Nasdaq, Cboe BZX and NYSE Arca adopt generic listing standards for commodity-based trust shares. The decision clears the final hurdle for asset managers seeking to launch spot ETFs tied to cryptocurrencies beyond Bitcoin and Ether. In July, the SEC outlined how exchanges could bring new products to market under the framework. Asset managers and exchanges must now meet specific criteria, but will no longer need to undergo drawn-out case-by-case reviews. Solana And XRP Funds Seen to Be First In Line Under the new system, the time from filing to launch can shrink to as little as 75 days, compared with up to 240 days or more under the old rules. “This is the crypto ETP framework we’ve been waiting for,” Bloomberg research analyst James Seyffart said on X, predicting a wave of new products in the coming months. The first filings likely to benefit are those tracking Solana and XRP, both of which have sat in limbo for more than a year. SEC Chair Paul Atkins said the approval reflects a commitment to reduce barriers and foster innovation while maintaining investor protections. The move comes under the administration of President Donald Trump, which has signaled strong support for digital assets after years of hesitation during the Biden era. New Standards Replace Lengthy Reviews And Repeated Denials Until now, the commission reviewed each application separately, requiring one filing from the exchange and another from the asset manager. This dual process often dragged on for months and led to repeated denials. Even Bitcoin spot ETFs, finally approved in Jan. 2024, arrived only after years of resistance and a legal battle with Grayscale. According to Bloomberg ETF analyst Eric Balchunas, the streamlined rules could apply to any cryptocurrency with at least six months of futures trading on the Coinbase Derivatives Exchange. That means more than a dozen tokens may now qualify for listing, potentially unleashing a new wave of altcoin ETFs. SEC Clears Grayscale Large Cap Fund Tracking CoinDesk 5 Index The SEC also approved the Grayscale Digital Large Cap Fund, which tracks the CoinDesk 5 Index, including Bitcoin, Ether, XRP, Solana and Cardano. Alongside this, it cleared the launch of options linked to the Cboe Bitcoin US ETF Index and its mini contract, broadening the set of crypto-linked derivatives on regulated US markets. Analysts say the shift shows how far US policy has moved. Where once regulators resisted digital assets, the latest changes show a growing willingness to bring them into the mainstream financial system under established safeguards
Share
CryptoNews2025/09/18 12:40
New Trump appointee Miran calls for half-point cut in only dissent as rest of Fed bands together

New Trump appointee Miran calls for half-point cut in only dissent as rest of Fed bands together

The post New Trump appointee Miran calls for half-point cut in only dissent as rest of Fed bands together appeared on BitcoinEthereumNews.com. Stephen Miran, chairman of the Council of Economic Advisers and US Federal Reserve governor nominee for US President Donald Trump, arrives for a Senate Banking, Housing, and Urban Affairs Committee confirmation hearing in Washington, DC, US, on Thursday, Sept. 4, 2025. The Senate Banking Committee’s examination of Stephen Miran’s appointment will provide the first extended look at how prominent Republican senators balance their long-standing support of an independent central bank against loyalty to their party leader. Photographer: Daniel Heuer/Bloomberg via Getty Images Daniel Heuer | Bloomberg | Getty Images Newly-confirmed Federal Reserve Governor Stephen Miran dissented from the central bank’s decision to lower the federal funds rate by a quarter percentage point on Wednesday, choosing instead to call for a half-point cut. Miran, who was confirmed by the Senate to the Fed Board of Governors on Monday, was the sole dissenter in the Federal Open Market Committee’s statement. Governors Michelle Bowman and Christopher Waller, who had dissented at the Fed’s prior meeting in favor of a quarter-point move, were aligned with Fed Chair Jerome Powell and the others besides Miran this time. Miran was selected by Trump back in August to fill the seat that was vacated by former Governor Adriana Kugler after she suddenly announced her resignation without stating a reason for doing so. He has said that he will take an unpaid leave of absence as chair of the White House’s Council of Economic Advisors rather than fully resign from the position. Miran’s place on the board, which will last until Jan. 31, 2026 when Kugler’s term was due to end, has been viewed by critics as a threat from Trump to the Fed’s independence, as the president has nominated three of the seven members. Trump also said in August that he had fired Federal Reserve Board Governor…
Share
BitcoinEthereumNews2025/09/18 02:26