Dockerized Android is a Docker-based virtualization platform that lets cyber-range designers simulate mobile attack and defense scenarios efficiently. Its modular design allows features like Bluetooth and GPS emulation to be toggled via Docker Compose, enhancing automation and realism. While best run on Linux, the system promises future cloud support and stronger security integrations, paving the way for more dynamic and realistic cybersecurity training environments.Dockerized Android is a Docker-based virtualization platform that lets cyber-range designers simulate mobile attack and defense scenarios efficiently. Its modular design allows features like Bluetooth and GPS emulation to be toggled via Docker Compose, enhancing automation and realism. While best run on Linux, the system promises future cloud support and stronger security integrations, paving the way for more dynamic and realistic cybersecurity training environments.

Building Smarter Cyber Ranges with Dockerized Android

2025/10/17 05:15

:::info Authors:

(1) Daniele Capone, SecSI srl, Napoli, Italy ([email protected]);

(2) Francesco Caturano, Dept. of Electrical Engineering and Information, Technology University of Napoli Federico II, Napoli, Italy ([email protected])

(3) Angelo Delicato, SecSI srl, Napoli, Italy ([email protected]);

(4) Gaetano Perrone, Dept. of Electrical Engineering and Information Technology, University of Napoli Federico II, Napoli, Italy ([email protected])

(5) Simon Pietro Romano, Dept. of Electrical Engineering and Information Technology, University of Napoli Federico II, Napoli, Italy ([email protected]).

:::

Abstract and I. Introduction

II. Related Work

III. Dockerized Android: Design

IV. Dockerized Android Architecture

V. Evaluation

VI. Conclusion and Future Developments, and References

VI. CONCLUSION AND FUTURE DEVELOPMENTS

In this work, we have described Dockerized Android, a platform that supports cyber-range designers in realizing mobile virtual scenarios. The application is based on Docker, i.e., a container-based virtualization framework extensively adopted in the cyber-range field for several benefits already mentioned. We described the main components and showed how it is possible to realize a complex cyber kill-chain scenario that involves the utilization of Bluetooth components. The architecture has been conceived at the outset as an extensible one. Its feature set can be dynamically enabled or disabled through the docker-compose creator, and some fine-grained options can be configured to customize the scenarios. The strength of this system is its ability to quickly run a mobile component through Docker, with many interesting features out of the box. Furthermore, the centralization of several components increases the overall usability level. The cons are all related to compatibility issues with Windows and OS X when running the Core for Emulator. While the former will probably be solved with the next updates, the latter is not solvable without significant changes to the OS X implementation. Another limitation is the lack of support for emulating some hardware components, e.g., Bluetooth. For these reasons, the Linux environment as a host machine is strongly recommended. We will also assess the potential benefits of using Dockerized Android in cloud-based environments in future works. Other improvements include the full integration of security-based features in the Android Emulator. For example, the GPS location could be useful to simulate a realistic route traveled by a simulated user. In recent works, cyber ranges are configured by using the high-level SDL (Specification and Description Language) representation [8]. Integrating this language in Dockerized Android is relatively easy, as every feature is set through Docker environment variables. Additional efforts will be focused on improving automation features, such as the design of an event-based architecture to simulate complex sequential actions involving human interaction.

REFERENCES

[1] Jan Vykopal et al. “Lessons learned from complex hands-on defence exercises in a cyber range”. In: 2017 IEEE Frontiers in Education Conference (FIE). 2017, pp. 1–8. DOI: 10.1109/FIE.2017.8190713.

\ [2] Adam McNeil and W. Stuart Jones. Mobile Malware is Surging in Europe: A Look at the Biggest Threats. https://www.proofpoint.com/us/blog/email-and-cloudthreats/mobile-malware- surging-europe-look- biggestthreats. Online; 14-May-2022. 2022.

\ [3] René Mayrhofer et al. “The Android Platform Security Model”. In: ACM Transactions on Privacy and Security 24.3 (Aug. 2021), pp. 1–35. DOI: 10 . 1145/ 3448609. URL: https://doi.org/10.1145/3448609.

\ [4] Ryotaro Nakata and Akira Otsuka. “CyExec*: A HighPerformance Container-Based Cyber Range With Scenario Randomization”. In: IEEE Access 9 (2021), pp. 109095–109114. DOI: 10 . 1109 / ACCESS . 2021 . 3101245.

\ [5] Ryotaro Nakata and Akira Otsuka. Evaluation of vulnerability reproducibility in container-based Cyber Range. 2020. DOI: 10.48550/ARXIV.2010.16024. URL: https: //arxiv.org/abs/2010.16024.

\ [6] Francesco Caturano, Gaetano Perrone, and Simon Pietro Romano. “Capturing flags in a dynamically deployed microservices-based heterogeneous environment”. In: 2020 Principles, Systems and Applications of IP Telecommunications (IPTComm). 2020, pp. 1–7. DOI: 10.1109/IPTComm50535.2020.9261519.

\ [7] Muhammad Mudassar Yamin, Basel Katt, and Vasileios Gkioulos. “Cyber ranges and security testbeds: Scenarios, functions, tools and architecture”. In: Computers & Security 88 (Jan. 2020), p. 101636. DOI: 10. 1016/ J. COSE.2019.101636.

\ [8] Enrico Russo, Luca Verderame, and Alessio Merlo. “Enabling Next-Generation Cyber Ranges with Mobile Security Components”. In: IFIP International Conference on Testing Software and Systems. Springer, 2020, pp. 150–165.

\ [9] Giuseppe Trotta Andrea Pierini. From APK to Golden Ticket. https://www.exploit-db.com/docs/english/44032- from- apk-to- golden-ticket.pdf. [Online; accessed 01- March-2021]. 2017.

\ [10] Genymotion. Android as a Service. https : / / www . genymotion.com/. [Online; accessed 1-March-2021].

\ [11] Corellium. ARM Device Virtualization. https : / / corellium.com/. [Online; accessed 10-March-2021].

\ [12] Android Emulator. https : / / developer . android . com / studio/run/emulator. Accessed: 11-01-2021.

\ [13] thyrlian. AndroidSDK. https : / / github . com / thyrlian / AndroidSDK. [Online; accessed 10-March-2021].

\ [14] budtmo. docker-android. https:// github. com/ budtmo/ docker-android. [Online; accessed 10-March-2021].

\ [15] bitrise-io. android. https://github.com/bitrise-io/android. [Online; accessed 10-March-2021].

\ [16] MobSF. Mobile Security Framework. https : / / www . github . com / MobSF / Mobile - Security - Framework - MobSF. [Online; accessed 1-March-2021].

\ [17] Dockerfile best practices. https : / / docs . docker. com / develop / develop - images / dockerfile _ best - practices/. Accessed: 13-02-2021.

\ [18] Flaticon. Free vector icons. https://www.flaticon.com/. [Online; accessed 17-April-2021].

\ [19] Frida. Frida. https://frida.re/. Online; 13-May-2022.

\ [20] Anonymized authors. Dockerized Android github repo. . In order to adhere to the double-blind review principle, the github repo information has been obfuscated and will be made available if and when the paper is accepted.

\ [21] Android-Exploits. https : / / github . com / sundaysec / Android - Exploits / blob / master / remote / 44242 . md. [Online; accessed 19-April-2021].

\ [22] Ben Seri and Gregory Vishnepolsky. BlueBorne - The dangers of Bluetooth implementations: Unveiling zero day vulnerabilities and security flaws in modern Bluetooth stacks. Tech. rep. Armis, 2017.

\ [23] Armis Security. BlueBorne. https://www.armis.com/ research/blueborne/. Online; 13-May-2022. 2017.

\

:::info This paper is available on arxiv under CC by-SA 4.0 Deed (Attribution-Sahrealike 4.0 International license.

:::

\

Market Opportunity
CyberConnect Logo
CyberConnect Price(CYBER)
$0.7124
$0.7124$0.7124
-1.65%
USD
CyberConnect (CYBER) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact [email protected] for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

The Channel Factories We’ve Been Waiting For

The Channel Factories We’ve Been Waiting For

The post The Channel Factories We’ve Been Waiting For appeared on BitcoinEthereumNews.com. Visions of future technology are often prescient about the broad strokes while flubbing the details. The tablets in “2001: A Space Odyssey” do indeed look like iPads, but you never see the astronauts paying for subscriptions or wasting hours on Candy Crush.  Channel factories are one vision that arose early in the history of the Lightning Network to address some challenges that Lightning has faced from the beginning. Despite having grown to become Bitcoin’s most successful layer-2 scaling solution, with instant and low-fee payments, Lightning’s scale is limited by its reliance on payment channels. Although Lightning shifts most transactions off-chain, each payment channel still requires an on-chain transaction to open and (usually) another to close. As adoption grows, pressure on the blockchain grows with it. The need for a more scalable approach to managing channels is clear. Channel factories were supposed to meet this need, but where are they? In 2025, subnetworks are emerging that revive the impetus of channel factories with some new details that vastly increase their potential. They are natively interoperable with Lightning and achieve greater scale by allowing a group of participants to open a shared multisig UTXO and create multiple bilateral channels, which reduces the number of on-chain transactions and improves capital efficiency. Achieving greater scale by reducing complexity, Ark and Spark perform the same function as traditional channel factories with new designs and additional capabilities based on shared UTXOs.  Channel Factories 101 Channel factories have been around since the inception of Lightning. A factory is a multiparty contract where multiple users (not just two, as in a Dryja-Poon channel) cooperatively lock funds in a single multisig UTXO. They can open, close and update channels off-chain without updating the blockchain for each operation. Only when participants leave or the factory dissolves is an on-chain transaction…
Share
BitcoinEthereumNews2025/09/18 00:09
SOLANA NETWORK Withstands 6 Tbps DDoS Without Downtime

SOLANA NETWORK Withstands 6 Tbps DDoS Without Downtime

The post SOLANA NETWORK Withstands 6 Tbps DDoS Without Downtime appeared on BitcoinEthereumNews.com. In a pivotal week for crypto infrastructure, the Solana network
Share
BitcoinEthereumNews2025/12/16 20:44
Why The Green Bay Packers Must Take The Cleveland Browns Seriously — As Hard As That Might Be

Why The Green Bay Packers Must Take The Cleveland Browns Seriously — As Hard As That Might Be

The post Why The Green Bay Packers Must Take The Cleveland Browns Seriously — As Hard As That Might Be appeared on BitcoinEthereumNews.com. Jordan Love and the Green Bay Packers are off to a 2-0 start. Getty Images The Green Bay Packers are, once again, one of the NFL’s better teams. The Cleveland Browns are, once again, one of the league’s doormats. It’s why unbeaten Green Bay (2-0) is a 8-point favorite at winless Cleveland (0-2) Sunday according to betmgm.com. The money line is also Green Bay -500. Most expect this to be a Packers’ rout, and it very well could be. But Green Bay knows taking anyone in this league for granted can prove costly. “I think if you look at their roster, the paper, who they have on that team, what they can do, they got a lot of talent and things can turn around quickly for them,” Packers safety Xavier McKinney said. “We just got to kind of keep that in mind and know we not just walking into something and they just going to lay down. That’s not what they going to do.” The Browns certainly haven’t laid down on defense. Far from. Cleveland is allowing an NFL-best 191.5 yards per game. The Browns gave up 141 yards to Cincinnati in Week 1, including just seven in the second half, but still lost, 17-16. Cleveland has given up an NFL-best 45.5 rushing yards per game and just 2.1 rushing yards per attempt. “The biggest thing is our defensive line is much, much improved over last year and I think we’ve got back to our personality,” defensive coordinator Jim Schwartz said recently. “When we play our best, our D-line leads us there as our engine.” The Browns rank third in the league in passing defense, allowing just 146.0 yards per game. Cleveland has also gone 30 straight games without allowing a 300-yard passer, the longest active streak in the NFL.…
Share
BitcoinEthereumNews2025/09/18 00:41