Researchers found that multimodal AI models cannot tell time. The more variation there was in the clock face, the more the chatbot being tested was likely to misreadResearchers found that multimodal AI models cannot tell time. The more variation there was in the clock face, the more the chatbot being tested was likely to misread

Before AI Takes Our Jobs, Someone Better Teach It How to Tell Time

Am I the only one who didn’t know that AI cannot figure out time? I mean, every day, we hear all about generative AI “revolutionizing” everything and replacing everyone. Pretty genius little things. So imagine my shock when I learned that multimodal AI models cannot tell time. How did I know, you ask?

To start with, researchers at the University of Edinburgh recently found that multimodal large language models (MLLMs) like ChatGPT-4o, GPT-o1, Gemini-2.0, and Claude 3.5-Sonnet ran into accuracy problems while reading a clock face.

Things got worse when they were tested with clocks designed with Roman numerals, a colored dial, or a decorative hour hand. Some of the clocks also had a hand that tracked seconds in addition to minutes and hours. In the face of those design touches, the AI models reportedly fell into further errors.

This discovery was made during a test of a lineup of top MLLMs today, and to think that Gemini-2.0 performed the “best” with only 22.8% accuracy sounds hilarious. GPT-4.o and GPT-o1’s exact match accuracy stood at 8.6% and 4.84% respectively.

Per the researchers, these models struggled with everything. Which hand is the hour hand? Which direction is it pointing? What angle corresponds to what time? What number is that? According to them, the more variation there was in the clock face, the more the chatbot being tested was likely to misread the clock.

These are literally basic skills for people. Most six or seven-year-olds can already tell time. But for these models, it might as well be the most complicated astrophysics.

After the clock fiasco, the researchers tested the bots on yearly calendars. You know, the ones with all twelve months on one page. GPT-o1 performed the “best” here, reaching 80 percent accuracy. But that still means that one out of every five answers was wrong, including simple questions like “Which day of the week is New Year’s Day? If my child failed to get that right on a quiz, I would honestly be very worried.

I never would have thought that AI models could ever get confused by a common calendar layout. But then, it is not very shocking to find out. It all still boils down to a long-standing gap in AI development. MLLMs only recognize patterns they have already seen, and clocks, calendars, or anything that requires spatial reasoning don’t fit into that.

Humans can look at a warped Dali clock and still figure out roughly what time it is meant to display. But AI models see a slightly thicker hour hand and kind of short-circuit.

Why This Matters

It is easy (almost satisfying) to laugh at ChatGPT, Gemini, and these models for failing a task you learned when you were little. A task you do with so much ease. As someone who has gotten jilted by clients for the free work these things offer, albeit substandard, I admit I do find it really satisfying.

But as much as I want to just laugh it off, there is a more serious angle to this. These same MLLMs are being pushed into autonomous driving perception, medical imaging, robotics, and accessibility tools. They are being used for scheduling and automation as well as real-time decision-making systems.

Now, clock-reading errors are funny. But medical errors? Navigation errors? Even scheduling errors? Not so funny.

If a model cannot reliably read a clock, trusting it blindly in high-stakes environments is too risky a gamble for me. It just shows how far these systems still are from actual, grounded intelligence. And how much human common sense and nuance still matter. I am trying so hard to steer clear of taking this chance to make a human vs. AI case. I sure won’t use it to preach “Why I Hate AI and You Should Too.” But there is a problem that needs to be looked into.

As the study’s lead author, Rohit Saxena, put it, these weaknesses “must be addressed if AI systems are to be successfully integrated into time-sensitive real-world applications.”

Market Opportunity
Sleepless AI Logo
Sleepless AI Price(AI)
$0.03723
$0.03723$0.03723
-2.74%
USD
Sleepless AI (AI) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact [email protected] for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Crypto News: Donald Trump-Aligned Fed Governor To Speed Up Fed Rate Cuts?

Crypto News: Donald Trump-Aligned Fed Governor To Speed Up Fed Rate Cuts?

The post Crypto News: Donald Trump-Aligned Fed Governor To Speed Up Fed Rate Cuts? appeared on BitcoinEthereumNews.com. In recent crypto news, Stephen Miran swore in as the latest Federal Reserve governor on September 16, 2025, slipping into the board’s last open spot right before the Federal Open Market Committee kicks off its two-day rate discussion. Traders are betting heavily on a 25-basis-point trim, which would bring the federal funds rate down to 4.00%-4.25%, based on CME FedWatch Tool figures from September 15, 2025. Miran, who’s been Trump’s top economic advisor and a supporter of his trade ideas, joins a seven-member board where just three governors come from Democratic picks, according to the Fed’s records updated that same day. Crypto News: Miran’s Background and Quick Path to Confirmation The Senate greenlit Miran on September 15, 2025, with a tight 48-47 vote, following his nomination on September 2, 2025, as per a recent crypto news update. His stint runs only until January 31, 2026, stepping in for Adriana D. Kugler, who stepped down in August 2025 for reasons not made public. Miran earned his economics Ph.D. from Harvard and worked at the Treasury back in Trump’s first go-around. Afterward, he moved to Hudson Bay Capital Management as an economist, then looped back to the White House in December 2024 to head the Council of Economic Advisers. There, he helped craft Trump’s “reciprocal tariffs” approach, aimed at fixing trade gaps with China and the EU. He wouldn’t quit his White House gig, which irked Senator Elizabeth Warren at the September 7, 2025, confirmation hearings. That limited time frame means Miran gets to cast a vote straight away at the FOMC session starting September 16, 2025. The full board now features Chair Jerome H. Powell (Trump pick, term ends 2026), Vice Chair Philip N. Jefferson (Biden, to 2036), and folks like Lisa D. Cook (Biden, to 2028) and Michael S. Barr…
Share
BitcoinEthereumNews2025/09/18 03:14
Kodiak Sciences Announces Pricing of Upsized Public Offering of Common Stock

Kodiak Sciences Announces Pricing of Upsized Public Offering of Common Stock

PALO ALTO, Calif., Dec. 16, 2025 /PRNewswire/ — Kodiak Sciences Inc. (Nasdaq: KOD), a precommercial retina focused biotechnology company committed to researching
Share
AI Journal2025/12/17 12:15
Oil jumps over 1% on Venezuela oil blockade

Oil jumps over 1% on Venezuela oil blockade

Oil prices rose more than 1 percent on Wednesday after US President Donald Trump ordered “a total and complete” blockade of all sanctioned oil tankers entering
Share
Agbi2025/12/17 11:55