The zkEVM ecosystem spent a year sprinting on latency. Proving time for an Ethereum block collapsed from 16 minutes to 16 seconds, costs dropped 45-fold, and participatingThe zkEVM ecosystem spent a year sprinting on latency. Proving time for an Ethereum block collapsed from 16 minutes to 16 seconds, costs dropped 45-fold, and participating

Ethereum Foundation refocuses to security over speed – sets strict 128-bit rule for 2026

The zkEVM ecosystem spent a year sprinting on latency. Proving time for an Ethereum block collapsed from 16 minutes to 16 seconds, costs dropped 45-fold, and participating zkVMs now prove 99% of mainnet blocks in under 10 seconds on target hardware.

The Ethereum Foundation (EF) declared victory on Dec. 18: real-time proving works. The performance bottlenecks are cleared. Now the real work starts, because speed without soundness is a liability, not an asset, and the math under many STARK-based zkEVMs has been quietly breaking for months.

In July, the EF set a formal target for “real-time proving” that bundled latency, hardware, energy, openness and security: prove at least 99% of mainnet blocks within 10 seconds, on hardware that costs roughly $100,000 and runs within 10 kilowatts, with fully open-source code, at 128-bit security, and with proof sizes at or below 300 kilobytes.

The Dec. 18 post claims the ecosystem met the performance target, as measured on the EthProofs benchmarking site.

Real-time here is defined relative to the 12-second slot time and about 1.5 seconds for block propagation. The standard is essentially “proofs are ready fast enough that validators can verify them without breaking liveness.”

The EF now pivots from throughput to soundness, and the pivot is blunt. Many STARK-based zkEVMs have relied on unproven mathematical conjectures to achieve advertised security levels.

Over the past months, some of those conjectures, especially the “proximity gap” assumptions used in hash-based SNARK and STARK low-degree tests, have been mathematically broken, knocking down the effective bit-security of parameter sets that depended on them.

The EF says the only acceptable endgame for L1 use is “provable security,” not “security assuming conjecture X holds.”

They set 128-bit security as the target, aligning it with mainstream crypto standards bodies and academic literature on long-lived systems, as well as with real-world record computations that show 128 bits is realistically out of reach for attackers.

The emphasis on soundness over speed reflects a qualitative difference.

If someone can forge a zkEVM proof, they can mint arbitrary tokens or rewrite L1 state and make the system lie, not just drain one contract.

That justifies what the EF calls a “non-negotiable” security margin for any L1 zkEVM.

Three-milestone roadmap

The post lays out a clean roadmap with three hard stops. First, by the end of February 2026, every zkEVM team in the race plugs its proof system and circuits into “soundcalc,” an EF-maintained tool that computes security estimates based on current cryptanalytic bounds and the scheme's parameters.

The story here is “common ruler.” Instead of each team quoting their own bit security with bespoke assumptions, soundcalc becomes the canonical calculator and can be updated as new attacks emerge.

Second, “Glamsterdam” by the end of May 2026 demands at least 100-bit provable security via soundcalc, final proofs at or below 600 kilobytes, and a compact public explanation of each team's recursion architecture with a sketch of why it should be sound.

That quietly walks back the original 128-bit requirement for early deployment and treats 100 bits as an interim target.

Third, “H-star” by the end of 2026 is the full bar: 128-bit provable security by soundcalc, proofs at or below 300 kilobytes, plus a formal security argument for the recursion topology. That is where this becomes less about engineering and more about formal methods and cryptographic proofs.

Technical levers

The EF points to several concrete tools intended to make the 128-bit, sub-300-kilobyte target feasible. They highlight WHIR, a new Reed-Solomon proximity test that doubles as a multilinear polynomial commitment scheme.

WHIR offers transparent, post-quantum security and produces proofs that are smaller and verification faster than those of older FRI-style schemes at the same security level.

Benchmarks at 128-bit security show proofs roughly 1.95 times smaller and verification several times faster than baseline constructions.

They reference “JaggedPCS,” a set of techniques for avoiding excessive padding when encoding traces as polynomials, which let provers avoid wasted work while still producing succinct commitments.

They mention “grinding,” which is brute-force searching over protocol randomness to find cheaper or smaller proofs while staying within soundness bounds, and “well-structured recursion topology,” meaning layered schemes in which many smaller proofs are aggregated into a single final proof with carefully argued soundness.

Exotic polynomial math and recursion tricks are being used to shrink proofs back down after cranking security up to 128 bits.

Independent work like Whirlaway uses WHIR to build multilinear STARKs with improved efficiency, and more experimental polynomial-commitment constructions are being built from data-availability schemes.

The math is moving fast, but it's also moving away from assumptions that looked safe six months ago.

What changes and the open questions

If proofs are consistently ready within 10 seconds and stay under 300 kilobytes, Ethereum can increase the gas limit without forcing validators to re-execute every transaction.

Validators would instead verify a small proof, letting block capacity grow while keeping home-staking realistic. This is why the EF's earlier real-time post tied latency and power explicitly to “home proving” budgets like 10 kilowatts and sub-$100,000 rigs.

The combination of large security margins and small proofs is what makes an “L1 zkEVM” a credible settlement layer. If those proofs are both fast and provably 128-bit secure, L2s and zk-rollups can reuse the same machinery via precompiles, and the distinction between “rollup” and “L1 execution” becomes more of a configuration choice than a rigid boundary.

Real-time proving is currently an off-chain benchmark, not an on-chain reality. The latency and cost numbers come from EthProofs' curated hardware setups and workloads.

There is still a gap between that and thousands of independent validators actually running these provers at home. The security story is in flux. The whole reason soundcalc exists is that STARK and hash-based SNARK security parameters keep moving as conjectures are disproven.

Recent results have redrawn the line between “definitely safe,” “conjecturally safe,” and “definitely unsafe” parameter regimes, meaning today's “100-bit” settings may be revised again as new attacks emerge.

It's not clear whether all major zkEVM teams will actually hit 100-bit provable security by May 2026 and 128-bit by December 2026 while staying under the proof-size caps, or whether some will quietly accept lower margins, rely on heavier assumptions, or push verification off-chain for longer.

The hardest part may not be math or GPUs, but formalizing and auditing the full recursion architectures.

The EF admits that different zkEVMs often compose many circuits with substantial “glue code” between them, and that documenting and proving soundness for those bespoke stacks is essential.

That opens a long tail of work for projects like Verified-zkEVM and formal verification frameworks, which are still early and uneven across ecosystems.

A year ago, the question was whether zkEVMs could prove fast enough. That question is answered.
The new question is whether they can prove soundly enough, at a security level that doesn't depend on conjectures that may break tomorrow, with proofs small enough to propagate across Ethereum's P2P network, and with recursion architectures formally verified enough to anchor hundreds of billions of dollars.

The performance sprint is over. The security race just started.

The post Ethereum Foundation refocuses to security over speed – sets strict 128-bit rule for 2026 appeared first on CryptoSlate.

Market Opportunity
Bitdealer Logo
Bitdealer Price(BIT)
$0.00267
$0.00267$0.00267
0.00%
USD
Bitdealer (BIT) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact [email protected] for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Shocking OpenVPP Partnership Claim Draws Urgent Scrutiny

Shocking OpenVPP Partnership Claim Draws Urgent Scrutiny

The post Shocking OpenVPP Partnership Claim Draws Urgent Scrutiny appeared on BitcoinEthereumNews.com. The cryptocurrency world is buzzing with a recent controversy surrounding a bold OpenVPP partnership claim. This week, OpenVPP (OVPP) announced what it presented as a significant collaboration with the U.S. government in the innovative field of energy tokenization. However, this claim quickly drew the sharp eye of on-chain analyst ZachXBT, who highlighted a swift and official rebuttal that has sent ripples through the digital asset community. What Sparked the OpenVPP Partnership Claim Controversy? The core of the issue revolves around OpenVPP’s assertion of a U.S. government partnership. This kind of collaboration would typically be a monumental endorsement for any private cryptocurrency project, especially given the current regulatory climate. Such a partnership could signify a new era of mainstream adoption and legitimacy for energy tokenization initiatives. OpenVPP initially claimed cooperation with the U.S. government. This alleged partnership was said to be in the domain of energy tokenization. The announcement generated considerable interest and discussion online. ZachXBT, known for his diligent on-chain investigations, was quick to flag the development. He brought attention to the fact that U.S. Securities and Exchange Commission (SEC) Commissioner Hester Peirce had directly addressed the OpenVPP partnership claim. Her response, delivered within hours, was unequivocal and starkly contradicted OpenVPP’s narrative. How Did Regulatory Authorities Respond to the OpenVPP Partnership Claim? Commissioner Hester Peirce’s statement was a crucial turning point in this unfolding story. She clearly stated that the SEC, as an agency, does not engage in partnerships with private cryptocurrency projects. This response effectively dismantled the credibility of OpenVPP’s initial announcement regarding their supposed government collaboration. Peirce’s swift clarification underscores a fundamental principle of regulatory bodies: maintaining impartiality and avoiding endorsements of private entities. Her statement serves as a vital reminder to the crypto community about the official stance of government agencies concerning private ventures. Moreover, ZachXBT’s analysis…
Share
BitcoinEthereumNews2025/09/18 02:13
XRP vs Ethereum Market Cap Flip Predicted as ETF Inflows Surge

XRP vs Ethereum Market Cap Flip Predicted as ETF Inflows Surge

The post XRP vs Ethereum Market Cap Flip Predicted as ETF Inflows Surge appeared on BitcoinEthereumNews.com. XRP-linked ETFs secured $1B in net inflows, defying
Share
BitcoinEthereumNews2025/12/20 21:47
BetFury is at SBC Summit Lisbon 2025: Affiliate Growth in Focus

BetFury is at SBC Summit Lisbon 2025: Affiliate Growth in Focus

The post BetFury is at SBC Summit Lisbon 2025: Affiliate Growth in Focus appeared on BitcoinEthereumNews.com. Press Releases are sponsored content and not a part of Finbold’s editorial content. For a full disclaimer, please . Crypto assets/products can be highly risky. Never invest unless you’re prepared to lose all the money you invest. Curacao, Curacao, September 17th, 2025, Chainwire BetFury steps onto the stage of SBC Summit Lisbon 2025 — one of the key gatherings in the iGaming calendar. From 16 to 18 September, the platform showcases its brand strength, deepens affiliate connections, and outlines its plans for global expansion. BetFury continues to play a role in the evolving crypto and iGaming partnership landscape. BetFury’s Participation at SBC Summit The SBC Summit gathers over 25,000 delegates, including 6,000+ affiliates — the largest concentration of affiliate professionals in iGaming. For BetFury, this isn’t just visibility, it’s a strategic chance to present its Affiliate Program to the right audience. Face-to-face meetings, dedicated networking zones, and affiliate-focused sessions make Lisbon the ideal ground to build new partnerships and strengthen existing ones. BetFury Meets Affiliate Leaders at its Massive Stand BetFury arrives at the summit with a massive stand placed right in the center of the Affiliate zone. Designed as a true meeting hub, the stand combines large LED screens, a sleek interior, and the best coffee at the event — but its core mission goes far beyond style. Here, BetFury’s team welcomes partners and affiliates to discuss tailored collaborations, explore growth opportunities across multiple GEOs, and expand its global Affiliate Program. To make the experience even more engaging, the stand also hosts: Affiliate Lottery — a branded drum filled with exclusive offers and personalized deals for affiliates. Merch Kits — premium giveaways to boost brand recognition and leave visitors with a lasting conference memory. Besides, at SBC Summit Lisbon, attendees have a chance to meet the BetFury team along…
Share
BitcoinEthereumNews2025/09/18 01:20