This study examines how the DevGPT dataset was created, cleaned, and prepared for research into developer–ChatGPT interactions. Drawing from over 16,000 shared GitHub conversations, researchers filtered out duplicates, non-English exchanges, and limited analyses to eight-turn dialogues. The final dataset offers a rich foundation for exploring how developers use ChatGPT within real-world coding workflows.This study examines how the DevGPT dataset was created, cleaned, and prepared for research into developer–ChatGPT interactions. Drawing from over 16,000 shared GitHub conversations, researchers filtered out duplicates, non-English exchanges, and limited analyses to eight-turn dialogues. The final dataset offers a rich foundation for exploring how developers use ChatGPT within real-world coding workflows.

Building the DevGPT Dataset for Developer–ChatGPT Studies

2025/11/12 23:30

Abstract

1 Introduction

2 Data Collection

3 RQ1: What types of software engineering inquiries do developers present to ChatGPT in the initial prompt?

4 RQ2: How do developers present their inquiries to ChatGPT in multi-turn conversations?

5 RQ3: What are the characteristics of the sharing behavior?

6 Discussions

7 Threats to Validity

8 Related Work

9 Conclusion and Future Work

References

\

Data Collection

In this section, we introduce the used dataset for our study (Section 2.1), followed by the used method utilized in preprocessing dataset (Section 2.2) and preparing datasets for research questions (Section 2.3). Figure 2 shows an overview of the data collection process and the used data for each of our RQs.

2.1 Data Source

Our research leverages the DevGPT dataset (Xiao et al., 2024) as the primary data source. DevGPT constitutes of an extensive archive of DeveloperChatGPT interactions, featuring 16,129 prompts and ChatGPT’s replies. Each shared conversation is coupled with the corresponding software development artifacts to enable the analysis of the context and implications of these developer interactions with ChatGPT. This collection was assembled by extracting shared ChatGPT links found in various GitHub components, such as source code, commits, pull requests, issues, discussions, and threads on Hacker News, over the period from July 27, 2023, to October 12, 2023. The DevGPT dataset is publicly available in a GitHub repository 4 , offering several snapshots. In this study, we focus on the most recent snapshot available as of October 12, 2023. 5

2.2 Data Preprocessing

As our analysis exclusively focuses on shared conversations occurring within GitHub issues and pull requests, we only consider the corresponding data provided by DevGPT, referred to as DevGPT-PRs and DevGPT-Issues. Based on our observations, we then perform the following two data preprocessing steps:

  1. The shared conversations contain sentences (prompts and replies) written in various human languages. To avoid potential misunderstanding from translating other languages different than English, we decided to only keep the conversations written in English. We utilized a Python library named lingua6 to identify conversations containing non-English content and removed those conversations. Specifically, we excluded 46 non-English conversations from DevGPT-PRs and 114 from DevGPT-Issues.
  2. The shared conversations contain duplicates, i.e., conversations with identical prompts and responses. We detected duplicate conversations and kept only one instance for analysis. Specifically, we removed 20 duplicated conversations from DevGPT-PRs and 83 duplicated conversations from DevGPT-Issues. After performing the above two data preprocessing steps, we ended up with 220 conversations from DevGPT-PRs, and 401 conversations from DevGPTIssues.

\ 2.3 Preparing Data for RQs

Figures 3 and 4 show the distribution of conversational turns within the preprocessed datasets. As shown in these figures, a large majority of shared conversations in both DevGPT-PRs (66.8%) and DevGPT-Issues (63.1%) are single-turn interactions. Meanwhile, conversations extending beyond 8 turns - comprising 8 prompts and their 8 corresponding replies - are notably infrequent, accounting for only 4% in DevGPT-PRs and 6% in DevGPT-Issues.

\ Given this distribution, we choose to implement a cutoff at 8 turns for RQ1-3 involving both datasets. This approach allows us to concentrate our investigation on the most prevalent patterns of interaction, thereby ensuring that our analysis remains closely aligned with the conversational dynamics that characterize the vast majority of the dataset. Following this cutoff, the finalized datasets encompass a total of 212 conversations for DevGPT-PRs and 375 for DevGPT-Issues As shown in Figure 2, in RQ1, we analyzed the contents of 580 initial prompts 7 .

\ In RQ2, we analyzed the content in the 645 prompts within all 189 multi-turn conversations. For RQ3, we extend our manual analysis to pull requests and issues that contain shared conversations. Specifically, we randomly sampled a statistically significant set containing 90 GitHub pull request comments and 160 GitHub issue comments containing shared conversations from DevGPT-PRs and DevGPT-Issues. The sampling is based on the results of RQ2. The detailed process is presented in the approach of RQ3 in Section 5.

:::info Authors

  1. Huizi Hao
  2. Kazi Amit Hasan
  3. Hong Qin
  4. Marcos Macedo
  5. Yuan Tian
  6. Steven H. H. Ding
  7. Ahmed E. Hassan

:::

:::info This paper is available on arxiv under CC BY-NC-SA 4.0 license.

:::

\

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact [email protected] for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

BDACS Launches KRW1 Stablecoin Backed by the Won

BDACS Launches KRW1 Stablecoin Backed by the Won

The post BDACS Launches KRW1 Stablecoin Backed by the Won appeared on BitcoinEthereumNews.com. BDACS Launches KRW1 Stablecoin Backed by South Korean Won Custody service provider BDACS has launched KRW1, a new stablecoin pegged 1:1 to the South Korean won (KRW). The regulated custodian focuses on institutional clients and offers services including crypto asset custody and transaction infrastructure supporting multiple blockchains. The KRW1 project recently completed its proof-of-concept (PoC) phase, with the stablecoin launching on the Avalanche blockchain. Each KRW1 token is fully backed by fiat currency, with reserves held at Woori Bank, one of South Korea’s largest financial institutions. Transparency and Platform Features BDACS emphasizes full transparency: holders can monitor reserves in real time via banking API integration, although no dedicated portal is currently available. According to the press release, “The KRW1 launch goes far beyond token issuance. BDACS has developed a comprehensive platform, including issuance and governance systems, as well as a user application supporting peer-to-peer transfers and transaction verification.” The stablecoin is positioned for global use, with potential expansion through new network integrations and collaborations with dollar-pegged stablecoins like USDC and USDT. BDACS also plans to integrate KRW1 into government initiatives, though negotiations or official involvement have not been confirmed. Current Status and Market Outlook KRW1 remains in the concept stage and is not yet publicly traded or available to retail consumers, as South Korea currently lacks a stablecoin framework. However, the launch is reportedly supported by the country’s new president, Lee Je-moon. In related news, Kakao is also reportedly considering a won-pegged stablecoin, highlighting growing interest in this emerging asset class. Source: https://coinpaper.com/11089/bdacs-launches-krw-1-stablecoin-backed-by-the-won
Share
BitcoinEthereumNews2025/09/18 21:28